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Abstract-Steady, two-dimensional, thermal convection in a vertical slot filled with a saturated porous 
medium is considered when the sidewalls are held at different constant temperatures and are misaligned, 
i.e. surface undulations exist. The spatial nonunifo~ties at the two walls are assumed to have small 
amplitudes and common (arbitrary) wave number. Attention is focused on the core flow, which is assumed 
to lie in the conductive regime. In the absence of nonuniformities this flow is unconditionally stable, 
consequently the actual flow is purely barochnic and there is no thermoconvective instability. Nusselt 
number results are presented and it is found that out-of-phase imperfections enhance the heat transfer 

significantly. 

INTRODUCTION 

THE ‘wvBLt+glazing’ problem of free convection of a 
Darcy-Boussinesq fluid saturating a porous cavity 
with vertical walls maintained at two different tem- 
peratures and horizontal walls adiabatic has received 
considerable attention in the recent past [l-19]. This 
work has been stimulated by applications ranging 
from building science to geophysics. Building science 
and thermal engineering applications were first motiv- 
ated by the fact that an appreciable insulating effect 
may be derived from the placing of porous material 
in the gap between cavity walls, and in multishield 
structures between the pressure vessel and the reactor 
in nuclear power installations. The geophysical appli- 
cations include modelling the spreading of pollutants 
(such as radionuclides), geothermal-energy reservoirs 
and convection in the Earth’s mantle. 

The theoretical work may be conveniently classified 
in (L&L) space, where Ra is the Rayleigh number 
based on the height h of the cavity and L is the aspect 
ratio, l/h where 1 is the length of the cavity. Blythe et 

al. [17] did this, by considering various distinguished 
limits that arise, and by setting previous as~ptotic 
analyses in their proper context. In particular, they 
identified five regions of the parameter space. 

(i) Fixed Ra/L < 10, L -+ co-the Hadley regime. 
This shallow cavity problem was analysed by Walker 
and Homsy [9] and by Bejan and Tien [lo]. Away 
from end zones near the vertical walls, there is weak 
horizontal flow driven by a constant horizontal tem- 
perature gradient. This central core flow is turned in 
the end zones wherein diffusion dominates. 

(ii) 1OL < Ra c 30L2, L -+ co-the intermediate 
regime. This is similar in structure to the Hadley 
regime in that the core equations are exactly the same 

but the flow is much stronger, and convection bal- 
ances diffusion in the end zone [ 191. 

(iii) 30L2 < Ra < 104L2, L -+ co-the merged 
regime. In this regime, the core flow is stronger with 
the consequence that convection now balances with 
vertical diffusion. Convection also balances diffusion 
in the end zone [ 171. 

(iv) Ru > 6.81L-*-the vertical boundary layer 
regime. Here the dominant mode of heat transfer 
across the cavity is convection, with horizontal 
diffusion important only in thin layers next to the 
vertical walls. 

(v) Ra > 104LZ--this condition, which is par- 
ticularly severe for shallow cavities with L >> 1, marks 
the appearance of thin horizontal boundary layers. 

The ‘boundary-layer problem’, where conditions 
(iv) and (v) are both satisfied, was first analysed by 
Weber [7], who neglected the effects of the horizontal 
boundary layers. Walker and Homsy [9] attempted to 
extend the analysis to include these layers and then 
Blythe et al. [I 51 and Daniels et al. [ 161 gave a first- 
order description of the entire flow field, including 
the corner interaction regions (see also Simpkins and 
Blythe [13] and Bejan [12]). The ‘conduction 
problem’, where (iv) is not satisfied and the vertical 
layers fill the slot, has been partially analysed by Gill 
[l]. As far as the present author is aware a complete 
description has not been found for this case, which can 
easily arise for tall slots, nor indeed have descriptions 
been given for the other disting~shed limits that arise 
for tall slots. 

A less comprehensive classification was offered by 
Prasad and Kulacki [18], who compared asymptotic 
results with numerical results obtained by themselves 
and by others cited in their paper. Prasad and Kulacki 
classify the flow regimes into three categories. 
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NOMENCLATURE 

boundary amplitudes Greek symbols 
Rayleigh number based upon B phase difference in boundary 
length imperfections 
boundary-shape functions 

: 
coefficient of cubical expansion 

semi-height of cavity boundary amplitude scale 
aspect ratio (height/length) transformed horizontal coordinate 
wave number of boundary imperfections IT dimensionless temperature 
permeability of the porous K thermal diffusi~ty 
medium A thermal conductivity 
mean semi-length of cavity p coefficient of viscosity 
aspect ratio (length/height) 1’ coefficient of kinematic viscosity 
operator defined by equation (I) 5 transformed vertical coordinate 
mean Nusselt number density 
through-how Z dimensionless stream-function. 
Rayleigh number based on height 
defined by equations (8) Subscripts 
half the applied temperature difference f fluid 
dimensionless Cartesian coordinates. m saturated porous medium. 

1 

(i) The conduction regime in which there is little or 
no vertical stratification of the core and the flow is 
moderate; this situation is obtained when either (a) 
~ujO,Lfiniteor(b~~niteR~~L,L~Oor~. 

(ii) The asymptotic regime in which there is sig- 
nificant stratification of the core and convective heat 
transfer ; this situation is obtained when 

Ra > (4.6sfo.l5)L-‘~73, L < 0.5 

Ra > 33.5-115.7/L+218.2/L2- 198.4/L3+88.1~L4 

and 

- lS.O/L5, 0.5 < L < 5 

Ra > (3 9&-O 2)L”.95, , . L > 5. 

This regime seems to encompass both the Hadley and 
intermediate regimes above. 

(iii) The boundary layer regime in which there are 
boundary layers formed and the dominant mode of 
heat transfer across the cavity is convection ; for tall 
cavities this regime exists when 

Ru > (37.2&0.8)/L’ =, L < 0.5. 

Prasad and Kulacki also introduce a ‘pseudo boun- 
dary-layer’ regime which exists for shallow cavities 
and seems to be equivalent to the merged layer regime 
above. It should be stressed that the criteria used by 
Prasad and Kulacki are rather subjective and so it is 
not terribiy clear how the two categories are related. 

The concern of the present study is with the con- 
ductive regime in a tall slot and it is assumed that 
A = Rax L = O(1) as L -+ 0. In the absence of 
boundary imperfections, the structure of the flow field 
is similar to that in the analogous Newtonian fluid 
problem considered by Daniels 1201: away from the 

horizontal boundaries there is a horizontally stratified 
vertical flow with a quadratic velocity profile eor- 
responding to upward motion in the hotter half of the 
slot and downward motion in the cooler half. The 
vertical two-way flow is turned in roughly square end 
zones near the horizontal boundaries. The how in 
these zones is nonlinear, unless A cc 1. It is the aim of 
this paper to elucidate the effects of boundary imper- 
fections on the flow and heat transfer in the core 
region of the slot. The end zones, in general, require 
a numerical solution of the full non-linear Darcy- 
Boussinesq equation and will be considered in a later 
study. 

This paper presents the first steps in generalizing 
the ‘cavity-wall’ problem to the more realistic situ- 
ation of non-planar boundaries. Non-planar bound- 
aries are certainly the rule rather than the exception 
in insulation problems, and it is well known that a 
common difficulty encountered in experimental stud- 
ies of cavity flows is that of obtaining walls of perfect 
alignment and length. in essence the study con- 
centrates on the effects of single modes from the Four- 
ier decomposition of the general boundary dispo- 
sition, and focuses upon the flow in the core region. 

FORMULATION 

The problem to be considered is that of the steady 
motion and heat transfer which occur when a vertical 
slot filled with a fluid-saturated porous medium is 
contained between two slightly misaligned, imper- 
meable sidewall boundaries, the surfaces of which are 
maintained at constant temperatures t_ AT, respec- 
tively, where AT > 0. The horizontal bounding sur- 
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faces are taken to be perfectly level and adiabatic. The 
mean disposition of the slot is vertical with mean 
length 21 and height 2h (Fig. 1). 

Subject to the Darcy-Boussinesq approximations, 
the governing non-dimensional equations are 

where $ is the stream-function, ~9 the temperature and 
x, y are dimensionless Cartesian coordinates based at 
the centre of the slot in the absence of boundary 
imperfections. Here A is the Darcy-Rayleigh number 
(based upon length) defined by 

g,(x) = aI cos @x+/3) and g&c) = a, cos @x-B) 

where the u’s are amplitude measures of, and 28 is 
the phase difference between, the respective spatial 
variations ; k is their common wave number. 

The boundary conditions needed to complete the 
specification of the problem are 

A = (gWKl)lW (3) 

where Kis the permeability, y the coefficient of cubical 
expansion of the saturating fluid, g the acceleration 
due to gravity and v, IC the coefficients of kinematic 
viscosity and thermal diffusivity, respectively. Vari- 
ables have been non-dimensionalized using length, 
velocity, pressure and temperature scales given by 

$ = 0, 0 = - 1 (right-hand boundary : y = 1 + 6g,(x)) 

$ = 0,0 = 1 (left-hand boundary : y = - 1 -6g,(x)). 

Results will also be presented for the case where there 
is a vertical through-flow, in which case the condition 
on $ at the right-hand boundary becomes 

1, rc/l, (scp))IK, and AT J, = Q. 

where p is the coefficient of viscosity and IC = I,/(pc),. 
Here A,,,, p and c denote respectively thermal con- 
ductivity, density and specific heat; subscripts f and 
m signify values for the fluid and saturated medium, 
respectively. Furthermore V2 denotes the two-dimen- 
sional Laplacian in x and y and 

ANALYSIS 

The flow regimes are characterized by the relative 
sizes of the aspect ratio, H = h/l, the Rayleigh number, 
A, and the scale, 6. The one of present concern is 
where A and 6 (<< 1) are of O(1) as H + co. In this 
case, the flow splits naturally into two regions : (i) the 
core region, where the flow is purely baroclinic and 
(ii) the end zones, where the flow direction is reversed. 
In (i), which is the focus of this paper 

a(e,$) de a$ ae a$ 
=-----. 

a(x, y) ax ay ay ax 

A 

2h 

1 

FIG. 1. Schematic of the cavity cross-section, 

The lateral surfaces are defined by 

y= (-l-6g,(x)} and y= {l+Sg&)} 

where the scale of the boundary imperfection 6 << 1, 
and the g’s, which are boundary-shape functions, are 
arbitrary. In fact it is assumed that the shape functions 
are Fourier analysable and a single mode is focused 
upon, so that 

y, $, 0 = O(1) and x = O(H). 

The case 6 = 0 corresponds to flow in a porous 
vertical slab, which has previously been considered by 
Gill [l]. He showed that fully developed counterflow 
(Q = 0), with linear velocity and temperature profiles 
across the slab, is unconditionally stable to infini- 
tesimal disturbances. The inclusion of through-flow 
(Q non-zero) does not alter this result, since it can 
be easily eliminated from the problem by a Galilean 
transformation. This special case has an exact ‘con- 
duction’ solution 

e= -y 

ti = A(1 -~‘)/2+Q(l+y)/2 > 
(4) 

and is valid in the core region where -H < x < H 
and -1 Qy< 1. 

For 6 # 0, it is convenient to introduce new vari- 
ables which straighten out the slot 

5=x, ?f= 2Y +49,G4 --&>I 
2+mtx)+gr(41~ (5) 
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The governing equations become 

where 

and 

with 

SI = 2-+-eh+9,) 
sz = (1 -YM-- (1+1M. i 

(8) 

One now looks for steady-state solutions and expands 

The f?(l) terms, which are given by equations (4), 
withy replaced by q, constitute the ‘conduction’ solu- 
tion, whilst the O(6) terms satisfy 

V”+, -A@,, 

= ~u,cos(k~-+~)[kZ(1-~)(Q-2A~)-A] 

+&cos(k{-fi)[-k2(1f$(Q-2Aq)-A] 

Vz6,-~,~-~~Q-2~~)~,~ 

= -~a,cos(k<+~)[k*(1--q)] 

+ :a,cos(ke-%)[k’(l +r)] 

These equations have a solution of the form 

(til,%,) = acsin(k~+B)(fl,sI) 

+a,cos(k5+B)(.f2,g2)+tarsin(kr--B)(f’~,g,) 

+a,cos(&-B)(f4,94) (10) 

where {J,gi: i = l(l)43 satisfy two linear eighth- 
order systems of ordinary differential equations, 
which involve the coupling of the functions with odd 
and with even subscripts, respectively. The solutions 
to these systems depend upon the parameters Q, A 
and k. 

The O(?J~) terms satisfy equations which have a 

solution of the form 

($*,%z) = a:(sin(2kSf28)(,f,,ysf 

+cos(2kS+28)(.f,,q,j+(.f?,g,)i 

+${sin (X5--28)(f’,,g,) 

+a,ai(sin2Ptf13,.4i3)+cos~8(,fI~..yiJf~ (11) 

where (J;,gi: i = S(l)141 satisfy a linear, fortieth- 
order system of ordinary differential equations (which 
contains independent lower-order sub-systems of 
equations). This system reduces in special cases such 
as a, = nrr % = 0, etc. The equations were solved using 
the NAG routine DOZHAF. 

On using &J/AT to nondimensionahze the local 
conductive heat transfer from the right-hand bound- 
ary, the mean Nusselt number Nu IS given by 

d<. (12) 

After a little algebra it is found that to O(6 *) 

Nu = 1 + $R:[g:+ i-49;] 

fa,Z[2k*+gk-t :-4y;J 

+a,alI(s’,-.4;-449;~)sin2P 

+(Isg;+g’,-4,9’,,)cos2Pl}. (13) 

RESULTS 

The results of the numerical computations are dis- 
played in Fig. 2. In all these plots (i), (ii) and (iii) show 
(tiO, %,), (tit, %,) and ($Zr %,), respectively, whilst (iv) 
displays ($,%) to 0(6*). The plots are in pairs with 
the streamlines on the left and the isotherms on the 
right ; the left-hand wall is the hot one. For illustrative 
purposes one has taken 6 = 0.15, 9, = a, = 1.0, and 
k = 1.5. 

Figures 2(a)-(c) illustrate the development as the 
Rayleigh number, A, increases in a varicose con- 
figuration with zero through-bow (Q = 0). The U(1) 
cont~butions show no qualitative changes, as 
expected since the Rayleigh number simply scales $,,, 
see equations (4). The behaviour of the O(6) solutions 
is qualitatively similar to that found by Wynne [22] in 
the corresponding Boussinesq fluid problem when the 
flow is sub-critical. The ffow consists ofa vertical stack 
of vortices, each of which displays a tendency to pinch 
and split as the Rayleigh number increases. It is inter- 
esting to note that the inclination of the isotherms 
switches as the Rayleigh number increases; this is 
caused by the increased base counter-flow (i.e. the 
O(1) flow) as A increases. The strength of the coun- 
terflow in the resultant flows (vi) increases with A, 
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_i) 

2369 

FIG. 2(a). The streamlines (left) and isotherms (right) when 6 = 0.15, a, = a, = 1.0 and k = 1.5 : (i) O(l), 
(ii) O(6), (iii) O(S*), and (iv) resultant to O(S’). Q = 0, A = 5, /3 = 0. 
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i) 

(iii) 'iv) 

FIG. 2(b). The streamlines (left) and isomers (right) when 6 = 0.15, CZ~ = EZ, = 1.0 and k = 1.5 : Q) O(l), 
(ii) O(b), (iii) O(S’), and (iv) resultant to 0(6*). Q = 0, A = 20, /I = 0. 
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(iii) 

(ii) 

(iv) 
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FIG. 2(c). The streamlines (left) and isotherms (right) when S = 0.15, a, = a, = 1.0 and k = 1.5 : (i) O(l), 
(ii) O(6), (iii) U(S*), and (iv) rest&ant to O(S*). Q = 0, A = 50, @ = 0. 
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i) (ii) 

(iv) 

FIG. 2(d). The streamlines (left) and isotherms (right) when 6 = 0.15, a, = u, = 1 .O and k = I .5 : (i) O(l), 
(ii) O(6), (iii) O(h2). and (iv) resultant to 0(fi2). Q = 0. A = 20, p = ~/4. 
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i) 

(iii) 

(ii) 

(iv) 

2373 

FIG. 2(e). The streamlines (left) and isotherms (right) when 6 = 0.15, a, = aI = 1.0 and k = 1.5: (i) O(I), 
(ii) O(b), (iii) O(P), and (’ ) IV resultant to O(P). Q = 0. A = 50, B = x/4. 
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(ii) 

(iv) 

FIG. 2(f). The streamlines (left) and isotherms (right) wheh 6 = 0.15, a, = a, = 1 .O and k = 1.5 : (i) O(l), 
(ii) O(6), (iii) 0(6’), and (iv) resultant to O(S*). Q = 0, A = 20, p = 42. 
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(iii) (iv) 

FIG. 2(g). The streamlines (left) and isotherms (tight) when S = 0.15, Up = u, = 1.0 and k = 1.5 : (i) O(l), 
(ii) O(S), (iii) O(#), and (iv) resultant to O(#). Q = 0, A = 50, /I = n/2. 
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I (i) 

iii) 

ii) 

(iv) 

FIG. 2(h). The streamlines (left) and isotherms (right) when 6 = 0.15, a, = aI = 1.0 and k = 1.5 : (i) O(1). 
(ii) O(6), (iii) O(S*), and (‘ ) IV resultant to O(P). Q = 5, A = 20, fl = 0. 
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(i) 

(iii) 

(ii) 

(iv) 

FIG. 2(j). The streamlines (left) and isotherms (right) when 6 = 0.15, 4 = a, = 1.0 and k = 1.5 : (i) O(l), 
(ii) O(6), (iii) O(P), and (iv) resultant to O(P). Q = 5, A = 20, B = x/4. 
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(i) 

(iii) 

(ii) 

(iv) 

FIG. 2(k). The streamlines (left) and isotherms (right) when 6 = 0.15, Us = a, = 1.0 and k = 1.5 : (i) O(l), 
(ii) O(a), (iii) O(S*), and (’ ) IV resultant to O(S’). Q = 5, A = 20, fi = 42. 
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and the isotherms become more distorted due to the CONCLUSIONS 

stronger secondary motions. 
In Figs. 2(d) and (e) the corresponding results are 

A study has been carried out on the conduction 

shown for a configuration with a phase difference 
regime in a porous vertical slot. The effects of spatially 

fl= n/4 when A = 20 and 30, respectively. Interesting 
periodic variations on the flow have been considered 

qualitative changes are seen in the pictures for the 
and it has been shown that ‘varicose’ imperfections 

different Rayleigh numbers : the O(6) streamlines 
enhance the heat transfer significantly, compared with 

again display the tendency to pinch and split as A 
sinuous (or in-phase) imperfections. 

increases In the sinuous configuration (3 = a/2), 
Figs. 2(f) and (g), one can see that, compared with 
the varicose configuration, there is less vertical, but 
more horizontal distortion. 

The effect of a weak vertical through-flow (Q = 5) 
on these three configurations when A = 20 is illus- 
trated in Figs. 2(h)-(k). One can see that the vertical 
flow causes an asymmetry in the base- and secondary- 
flow patterns. 

From a practical point of view, it is not the inter- 
esting changes in the flow and temperature fields that 
are significant, but rather the consequential changes in 
the heat-transfer characteristics. In Fig. 3 the Nusselt 
number for the varicose and sinuous configurations 
is compared. Clearly it is the out-of-phase (varicose) 
configuration that has a significantly higher heat 
transfer coefficient than other general configurations 
(the Nusselt numbers of which will lie between the 
values for these two extreme cases). 

When A = 0, the Nusselt number is, in general, 
not equal to unity since the number represents the 
dimensionless heat transfer across a wavy slot. A little 
algebra shows that in this case 

- 
Nu=l+ &(cosh2k+cos2/?) 

to O(6’) ; these values are shown on Fig. 3 for the 
varicose (p = 0) and sinuous (B = n/2) cases when 
k = 1.5. 
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CONVECTION THERMIQUE PERMANENTE ET BIDIMENSIONNELLE 
DANS UNE COUCHE POREUSE VERTICALE AVEC DES IMPERFECTIONS 

SPATIALEMENT PERIODIQUES AUX FRONTIERES 

RCum&Une convection thermique permanente et bidimensionnelle, dans une fente verticale, remplie 
dun milieu poreux sature, est consider&e avec des parois la&ales maintenues a des temperatures differentes 
constantes et non paralleles, par exemple avec des ondulations de surface. Les non-uniformites spatiales 
sur les deux parois sont supposees avoir de faibles amplitudes et des nombres d’onde communs (arbitraires). 
L’attention est port&e sur l’ecoulement au coeur, qui est suppose etre sit& dans le regime conductif. En 
l’absence des non-uniformites cet Bcoulement est inconditionnellement stable, en consequence l’bcoulement 
estpurementbaroclinique etiln'ya pas d'instabilitithermoconvective.Onpresenteles resultats ennombre 

de Nusselt et on trouve qu'iln'y a pas d'accroissement sensible dutransfert de chaleur. 

STATIONARE ZWEIDIMENSIONALE THERMISCHE KONVEKTION IN EINEM 
SENKRECHTEN SPALT MIT UBERFLUTETER SCHUTTUNG UND UNREGELMASSIGEN 

WANDEN 

Zusammenfassung-Die stationare, zweidimensionale thermische Konvektion in einem senkrechten Spalt, 
der mit einer iiberfluteten Schiittung gefiillt ist, wird betrachtet. Die W&de werden auf konstanten, jedoch 
unterschiedlichen Temperaturen gehalten und sind nur ungeniigend parallel ausgerichtet, d. h. an der 
Oberfllche wellig. Die Amplitude der Wellen ist klein, ihre Wellenzahl beliebig. Besonderes Augenmerk 
wird auf die Kernstriimung gerichtet, von der angenommen wird, da8 sie im Bereich der Warmeleitung 
liegt. Ohne Unebenheiten ist diese Strijmung immer stabil, das hei&, es liegt eine Striimung ohne 
konvektionsbedingte Instabilitaten vor. Es werden Nu-Zahlen dargestellt, und es wird gezeigt, da8 eine 

Phasenverschiebung bei der Welligkeit den Warmeiibergang erheblich verbessert. 

CTAHAOHAPHAfi ABYXMEPHAI TEIIJIOBA5I KOHBEKHHR B BEPTMKAJIbHOn 
IIOPMCTOB IIJEJIu C I-IPOCTPAHCTBEHHbIMkl TIEPMOAH9ECKHMH aE@EKTAMM 

FPAHMU 

~oTa~n-PaccMaTpHBaeTcncTa~oHapHarnayxMepHa~TennoBarKoHseKqHK~BepTHKanb~oiimena, 
sanonHeH~oiiHacb~eHHoiinopwnoircpenoii.EOKOBbIeCTeHKliHMe~Tpaan~~~yw, IIOCTO~HHyloTeMne- 
paTypy II HepOBHyIO nOBepXIIOCTb. f@nIIOJIaraeTCK, 'IT0 IIpOCTpaHCTBeHHbIe HeOnHOpOnHOCTH 06eHX 
CTeHOK HMemT MaJIbIe aMII,IHTynbI II o6mee (IIpOIKIBOJIbHOe) BOJIHOBOe 'IHCJIO. Oco6oe BHHMaHHe 
yKeJIeH0 Kfipy nOTOKa,IIJIK KOTOpOrO IIpWVIOpJIaraeTCR KOHnyKTABHbIH pC4CEiM.&Jbi OTCyTCTIHIH HeOn- 
HOpOnHOCTeii 3TOT nOTOK, 6e3yCJIOBH0, cTa6HJIeH, COOTWTCTBCHHO peaJIbHblii nOTOK KBJISeTCR 'IHCTO 
6apOKJIIiHHbIM II He XapaKTepH3yeTCK TenJIOKOHBeKTRBIIOfi IIeyCTOkIHBOCTbIO. f@nCTaBJIeHbI pe3yJIb- 
TaTbISHC,Ia HyCCEVIbTaH HakneHO,'ITO CIuHIHyTble n0 +a3e jTe+'ZKTbI 3Ha'IHTeJIbHO yCHJIHBaIOTTenJIOnc- 

peeoc. 


